内部结构图
磁场形成
节拍运动动画
定子通电方式
两转子齿转动方式
方式一
--------------------------------------------------------------------------------------------------
方式二
--------------------------------------------------------------------------------------------------
方式三
--------------------------------------------------------------------------------------------------
四转子齿转动方式
方式一
--------------------------------------------------------------------------------------------------
方式二
--------------------------------------------------------------------------------------------------
方式三
--------------------------------------------------------------------------------------------------
展开结构
细分(微步进分辨率)是相对于控制器的名词,它是控制芯片内部通过控制电机绕组的电流,从而实现控制步进电机的转动角度,如下图A4899:
当需要控制步进电机转动比最小步距角更小的角度时,就需要引用细分控制,磁力的大小与绕组的电流大小是相关的。
当通电相的电流不会马上到达峰值,而断电相的电流也不会立即降为零时,电机内部磁场为上下两相电流共同合成,而产生的磁场合力,会使转子有一个新的平衡位置,这个新的平衡位置在原最小步距角的范围内。也就是说, 如果绕组电流的波形不再是一个近似方波, 而是分成N 个阶梯的近似阶梯波, 则电流每升或者降一个阶梯时, 转子转动一小步。当转子按照这个规律转过N 小步时, 实际相当于它转过一个步距角。这种将一个步距角分成若干小步的驱动方法,称为细分驱动。
如图3: T1 是一个高频开关管。T2 管的发射极接一个电流取样小电阻R。比较器一端接给定电压uc, 另一端接R 上的压降。控制脉冲ui 为低电平时, T1 和T2 均截止。当ui 为高电平时, T1 和T2 均导通, 电源向电机供电。由于绕组电感的作用, R 上电压逐渐升高, 当超过给定电压uc, 比较器输出低电平, 与门因此输出低电平, T1 截止, 电源被切断, 绕组电感放电。当取样电阻上的电压小于给定电压时, 比较器又输出高电平, 与门输出高电平, T1 又导通, 电源又开始向绕组供电, 这样反复循环, 直到ui 又为低电平。因此: T2 每导通一次, T1 导通多次, 绕组的电流波形为锯齿形, 如图4 所示, 在T2 导通的时间里电源是脉冲式供电( 图4 中ua 波形) , 所以提高了电源效率, 而且还能有效抑制共振。
结束!
内部结构图
磁场形成
节拍运动动画
定子通电方式
两转子齿转动方式
方式一
--------------------------------------------------------------------------------------------------
方式二
--------------------------------------------------------------------------------------------------
方式三
--------------------------------------------------------------------------------------------------
四转子齿转动方式
方式一
--------------------------------------------------------------------------------------------------
方式二
--------------------------------------------------------------------------------------------------
方式三
--------------------------------------------------------------------------------------------------
展开结构
细分(微步进分辨率)是相对于控制器的名词,它是控制芯片内部通过控制电机绕组的电流,从而实现控制步进电机的转动角度,如下图A4899:
当需要控制步进电机转动比最小步距角更小的角度时,就需要引用细分控制,磁力的大小与绕组的电流大小是相关的。
当通电相的电流不会马上到达峰值,而断电相的电流也不会立即降为零时,电机内部磁场为上下两相电流共同合成,而产生的磁场合力,会使转子有一个新的平衡位置,这个新的平衡位置在原最小步距角的范围内。也就是说, 如果绕组电流的波形不再是一个近似方波, 而是分成N 个阶梯的近似阶梯波, 则电流每升或者降一个阶梯时, 转子转动一小步。当转子按照这个规律转过N 小步时, 实际相当于它转过一个步距角。这种将一个步距角分成若干小步的驱动方法,称为细分驱动。
如图3: T1 是一个高频开关管。T2 管的发射极接一个电流取样小电阻R。比较器一端接给定电压uc, 另一端接R 上的压降。控制脉冲ui 为低电平时, T1 和T2 均截止。当ui 为高电平时, T1 和T2 均导通, 电源向电机供电。由于绕组电感的作用, R 上电压逐渐升高, 当超过给定电压uc, 比较器输出低电平, 与门因此输出低电平, T1 截止, 电源被切断, 绕组电感放电。当取样电阻上的电压小于给定电压时, 比较器又输出高电平, 与门输出高电平, T1 又导通, 电源又开始向绕组供电, 这样反复循环, 直到ui 又为低电平。因此: T2 每导通一次, T1 导通多次, 绕组的电流波形为锯齿形, 如图4 所示, 在T2 导通的时间里电源是脉冲式供电( 图4 中ua 波形) , 所以提高了电源效率, 而且还能有效抑制共振。
结束!
内部结构图
磁场形成
节拍运动动画
定子通电方式
两转子齿转动方式
方式一
--------------------------------------------------------------------------------------------------
方式二
--------------------------------------------------------------------------------------------------
方式三
--------------------------------------------------------------------------------------------------
四转子齿转动方式
方式一
--------------------------------------------------------------------------------------------------
方式二
--------------------------------------------------------------------------------------------------
方式三
--------------------------------------------------------------------------------------------------
展开结构
细分(微步进分辨率)是相对于控制器的名词,它是控制芯片内部通过控制电机绕组的电流,从而实现控制步进电机的转动角度,如下图A4899:
当需要控制步进电机转动比最小步距角更小的角度时,就需要引用细分控制,磁力的大小与绕组的电流大小是相关的。
当通电相的电流不会马上到达峰值,而断电相的电流也不会立即降为零时,电机内部磁场为上下两相电流共同合成,而产生的磁场合力,会使转子有一个新的平衡位置,这个新的平衡位置在原最小步距角的范围内。也就是说, 如果绕组电流的波形不再是一个近似方波, 而是分成N 个阶梯的近似阶梯波, 则电流每升或者降一个阶梯时, 转子转动一小步。当转子按照这个规律转过N 小步时, 实际相当于它转过一个步距角。这种将一个步距角分成若干小步的驱动方法,称为细分驱动。
如图3: T1 是一个高频开关管。T2 管的发射极接一个电流取样小电阻R。比较器一端接给定电压uc, 另一端接R 上的压降。控制脉冲ui 为低电平时, T1 和T2 均截止。当ui 为高电平时, T1 和T2 均导通, 电源向电机供电。由于绕组电感的作用, R 上电压逐渐升高, 当超过给定电压uc, 比较器输出低电平, 与门因此输出低电平, T1 截止, 电源被切断, 绕组电感放电。当取样电阻上的电压小于给定电压时, 比较器又输出高电平, 与门输出高电平, T1 又导通, 电源又开始向绕组供电, 这样反复循环, 直到ui 又为低电平。因此: T2 每导通一次, T1 导通多次, 绕组的电流波形为锯齿形, 如图4 所示, 在T2 导通的时间里电源是脉冲式供电( 图4 中ua 波形) , 所以提高了电源效率, 而且还能有效抑制共振。
结束!
内部结构图
磁场形成
节拍运动动画
定子通电方式
两转子齿转动方式
方式一
--------------------------------------------------------------------------------------------------
方式二
--------------------------------------------------------------------------------------------------
方式三
--------------------------------------------------------------------------------------------------
四转子齿转动方式
方式一
--------------------------------------------------------------------------------------------------
方式二
--------------------------------------------------------------------------------------------------
方式三
--------------------------------------------------------------------------------------------------
展开结构
细分(微步进分辨率)是相对于控制器的名词,它是控制芯片内部通过控制电机绕组的电流,从而实现控制步进电机的转动角度,如下图A4899:
当需要控制步进电机转动比最小步距角更小的角度时,就需要引用细分控制,磁力的大小与绕组的电流大小是相关的。
当通电相的电流不会马上到达峰值,而断电相的电流也不会立即降为零时,电机内部磁场为上下两相电流共同合成,而产生的磁场合力,会使转子有一个新的平衡位置,这个新的平衡位置在原最小步距角的范围内。也就是说, 如果绕组电流的波形不再是一个近似方波, 而是分成N 个阶梯的近似阶梯波, 则电流每升或者降一个阶梯时, 转子转动一小步。当转子按照这个规律转过N 小步时, 实际相当于它转过一个步距角。这种将一个步距角分成若干小步的驱动方法,称为细分驱动。
如图3: T1 是一个高频开关管。T2 管的发射极接一个电流取样小电阻R。比较器一端接给定电压uc, 另一端接R 上的压降。控制脉冲ui 为低电平时, T1 和T2 均截止。当ui 为高电平时, T1 和T2 均导通, 电源向电机供电。由于绕组电感的作用, R 上电压逐渐升高, 当超过给定电压uc, 比较器输出低电平, 与门因此输出低电平, T1 截止, 电源被切断, 绕组电感放电。当取样电阻上的电压小于给定电压时, 比较器又输出高电平, 与门输出高电平, T1 又导通, 电源又开始向绕组供电, 这样反复循环, 直到ui 又为低电平。因此: T2 每导通一次, T1 导通多次, 绕组的电流波形为锯齿形, 如图4 所示, 在T2 导通的时间里电源是脉冲式供电( 图4 中ua 波形) , 所以提高了电源效率, 而且还能有效抑制共振。
结束!
通用分页核心思路 将上一次查询请求再发一次,只不过页码变了
PageBean
分页三要素
page 页码 视图层传递过来
rows 页大小 视图层传递过来
total 总记录数 后台查出来
pagination 是否分页 视图层传递过来
后台
2.1 entity
2.2 dao
第一次查满足条件的总记录数
第二次查指定页码并满足条件的记录
二次查询的条件要一致
2.3 控制层
Servlet
视图层
PageTag
如何将上一次的请求再发一次:submit()
请求的参数:
private Map<String, String[]> parameterMap;
req.getParameterMap();
请求的地址:
private String url;
req.getContextPath()+req.getServletPath();
起始记录=(this.page - 1) * this.rows
最大页=total/rows if(0!=total%rows) 需要加1
普通sql转总记录数的sql SELECT count(*) from ("+ sql+")t
普通sql转满足条件的sql sql+" limit “+pageBean.getStartIndex()+”,"+pageBean.getRows();
当前第N页 共N页 共N条 首页href=‘javascript:doForward(1)’ 上一页 下一页 尾页
效果截图: